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Abstract. We provide elementary proofs of several results concerning the possible outcomes arising from

a fixed profile within the class of positional voting systems. Our arguments enable a simple and explicit

construction of paradoxical profiles, and we also demonstrate how to choose weights that realize desirable

results from a given profile. The analysis ultimately boils down to thinking about positional voting systems

in terms of doubly stochastic matrices.

1. Introduction

Suppose that n candidates are running for a single office. There are many different social choice pro-

cedures one can use to select a winner. In this article, we study a particular class called positional voting

systems. A positional voting system is an electoral method in which each voter submits a ranked list of

the candidates. Points are then assigned according to a fixed weighting vector w that gives wi points to

a candidate every time they appear in position i on a ballot, and candidates are ranked according to the

total number of points received. For example, plurality is a positional voting system with weighting vector

w = [ 1 0 0 · · · 0 ]T. One point is assigned to each voter’s top choice, and the candidate with the most

points wins. The Borda count is another common positional voting system in which the weighting vector

is given by w = [n− 1 n− 2 · · · 1 0 ]T. Other examples include the systems used in the Eurovision Song

Contest, parliamentary elections in Nauru, and the AP College Football Poll [2, 8, 9].

By tallying points in this manner, a positional voting system outputs not just a winner, but a complete

(though not necessarily strict) ranking of all candidates, called the societal ranking. The societal ranking

produced by a positional voting system depends not only on the set of ballots, called the profile, but also on

the choice of weighting vector. With the freedom to choose different weighting vectors, one can achieve many

different outcomes from the same profile. An immediate question is “Given a profile, how many different

societal rankings are possible?”

In [11], Donald Saari famously showed that for any profile on n alternatives, there are at most n!−(n−1)!

possible strict societal rankings depending on the choice of weighting vector. Moreover, this bound is sharp in

that there exist profiles for which exactly this many different strict rankings are possible. In [6], Daugherty,

Eustis, Minton, and Orrison provided a new approach to analyzing positional voting systems and extended

some of Saari’s results to cardinal (as opposed to ordinal) rankings, as well as to partial rankings; see also [5].

Our article serves to complement these works by providing alternative derivations that afford more explicit

constructions, new perspectives, and arguments which some may find more accessible.

After establishing some conceptual foundations, we proceed by proving the main result in [6] using facts

about doubly stochastic matrices (Theorem 3.3). With a little more linear algebra, we are then able to

recover Saari’s findings (Theorems 3.6 and 3.9). An advantage of our methodology is that it gives a concrete
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means of constructing ‘paradoxical profiles.’ It also enables us to provide a simple geometric characterization

of the possible outcomes resulting from a given profile (Theorem 4.2).

In addition, our work illustrates the utility of thinking about doubly stochastic matrices and the braid

arrangement in problems related to social choice procedures. Doubly stochastic matrices arise very naturally

in our analysis, and the braid arrangement provides a nice geometric realization of rankings. While our

arguments do not depend on any deep facts about hyperplane arrangements, many of the objects we work

with have a natural interpretation within this framework, and it provides a useful vernacular for thinking

about such matters. As with the algebraic voting theory from [6], the hope is that by formulating problems

in terms of different mathematical constructs, new tools and perspectives become available. The connection

with hyperplane arrangements has received some attention in previous works—for instance, Terao’s proof

of Arrow’s impossibility theorem [14]—but doubly stochastic matrices seem to have been given much less

consideration in the context of voting.

Finally, our approach serves to partially bridge the perspectives from [11] and [6]. Saari provides a

geometric realization of positional voting procedures in terms of certain high-dimensional simplices; see also

[12]. We use some similar ideas, but cast them in the language of the braid arrangement. On the other hand,

Daugherty et al. describe positional voting using Young tableaux, which enables them to harness results

from the representation theory of the symmetric group. Our analysis employs ideas from linear algebra to

capture the essence of these arguments.

2. Notation and Terminology

Throughout this article, n ≥ 3 is a fixed integer representing the number of candidates. The number of

voters is N , which we only assume to be rational (though Proposition 3.8 shows that we may take N ∈ N
if we are just interested in ordinal rankings). While n is arbitrary and given in advance, N may have some

implicit constraints depending on the context. We work exclusively over the field Q of rational numbers, and

we write N0 for the set of nonnegative integers. Vectors are always written in boldface with the components

of a generic n-dimensional vector v denoted by v1, v2, . . . , vn. We write 1 for the vector of all ones and J

for the matrix of all ones, where the dimensions are clear from context. Finally, we use the notation 1{·} to

represent the indicator function, so that, for example, 1{i < j} equals 1 if i < j and 0 otherwise.

Let σ be a permutation in Sn and define the following subsets of Qn:

V0 =
{
x ∈ Qn : x1 + · · ·+ xn = 0

}
,

Cσ =
{
x ∈ Qn : xσ(1) > xσ(2) > · · · > xσ(n)

}
,

W = Cid ∩ V0 =
{
x ∈ Qn : x1 > x2 > · · · > xn, x1 + · · ·+ xn = 0

}
.

The set W will be of particular importance for us and can be thought of as the set of strict weighting vectors.

Clearly such vectors should have decreasing entries, and the sum-zero normalization is essentially because

adding a multiple of 1 to a weighting vector does not affect the ranking of candidates. (Further elaboration

is given at the end of this section.) If we wish to allow the same point value to be assigned to multiple

candidates, we can consider the closure W .

Now label the permutations in Sn lexicographically according to one-line notation, and let R` = Rσ`
be

the n × n permutation matrix corresponding to σ`, defined by R`(i, j) = 1{σ`(j) = i}. Given a weighting

vector w ∈W , define the n× n! matrix Tw =
[
σ1w σ2w · · · σn!w

]
having `th column

σ`w := R`w =
[
wσ−1

` (1) wσ−1
` (2) · · · wσ−1

` (n)

]T
.
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For a given profile p ∈ Qn!, the results vector for the positional voting procedure associated with w is given

by

(1) r = Twp = p1R1w + p2R2w + · · ·+ pn!Rn!w = Qpw

where Qp is a convenient shorthand for
∑n!
`=1 p`R`.

Each σ ∈ Sn corresponds to the ranking of the candidates (labeled 1 through n) in which candidate σ(k)

is the kth favorite. The profile p encodes preferences of the electorate so that p` is the number of voters

with preference σ`. The (i, j)-entry of Qp is thus the number of voters ranking candidate i in jth place. If

each voter assigns wk points to their kth favorite candidate, then rj is the total number of points given to

candidate j. The societal ranking for this election procedure is π ∈ Sn with r ∈ Cπ. (We are assuming for

the moment that a strict ranking is achieved. The possibility of ties will be addressed after Example 2.1.)

Note that we have given two different ways of computing the results vector r in equation (1). On one

hand, we have Tw, an n×n! matrix that encodes all the possible permutations of the weighting vector, which

can be combined with the n!-dimensional profile vector p to yield the result. On the other hand, we have

Qp, an n× n matrix that encodes the number of votes each candidate receives in each place, which can be

combined with the n-dimensional weighting vector w to yield the result.

Example 2.1. Consider an election with 4 candidates and voter preferences described by the following

table.

Voting Preference Number of Votes

(2, 3, 4, 1) 8

(1, 3, 2, 4) 5

(4, 3, 2, 1) 10

(2, 3, 1, 4) 8

(4, 1, 3, 2) 7

Then

Qp = 8


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

+ 5


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

+ 10


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0



+ 8


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

+ 7


0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

 =


5 7 8 18

16 0 15 7

0 31 7 0

17 0 8 13

 .
To implement the Borda count, we use w = [ 1.5 0.5 −0.5 −1.5 ]T, which is obtained from [ 3 2 1 0 ]T

by subtracting 1
4 (3 + 2 + 1 + 0)1. This yields

Qpw =


5 7 8 18

16 0 15 7

0 31 7 0

17 0 8 13

 ·


1.5

0.5

−0.5

−1.5

 =


−20

6

12

2

 ,
so that the societal ranking is (3, 2, 4, 1).
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If instead we use the plurality method, w = [ 0.75 −0.25 −0.25 −0.25 ]T, we find that

Qpw =


5 7 8 18

16 0 15 7

0 31 7 0

17 0 8 13

 ·


0.75

−0.25

−0.25

−0.25

 =


−4.5

6.5

−9.5

7.5

 ,
resulting in (4, 2, 1, 3). By changing the weights, we moved the first place candidate to last place!

Of course, it is also possible that r 6∈ Cπ for any π ∈ Sn because there are ties between candidates. In this

case, r lies on one or more of the hyperplanes Hij =
{
x ∈ Qn : xi = xj

}
comprising the braid arrangement.

The sets Cσ described above are known as chambers of the braid arrangement. If we allow for nonstrict

inequalities in their definition, the resulting objects are called faces. The faces of the braid arrangement

correspond to ordered set partitions of [n] via G ∼
(
B1, . . . , Bm

)
when G consists of all x ∈ Qn such that

xi > xj if and only if there exist k < ` with i ∈ Bk and j ∈ B`. If the results vector r belongs to G, then Bk

is the set of candidates tied for kth place. The chambers are n-dimensional faces representing strict rankings,

and two results vectors in Qn lie in the same face if they correspond to identical rankings of the candidates.

Finally, we observe that if w ∈ V0, then σw ∈ V0 for all σ ∈ Sn, so r as defined in equation (1) is a

linear combination of sum-zero vectors and thus lies in V0 as well. Also, the decomposition Qp =
∑n!
`=1 p`R`

shows that every row and column of Qp sums to N =
∑n!
`=1 p`, the total number of ballots cast. Thus the

condition that w ∈ V0 is not much of a restriction since any y ∈ Cid can be decomposed as y = y + ay1

where y ∈W and ay = 1
n

∑n
i=1 yi. Moreover, Qpy lies in the same face as Qpy because

Qpy = Qpy + ayQp1 = Qpy +Nay1.

Indeed,
⋂
i<j Hij = {c1 : c ∈ Q}, so it is natural to project the braid arrangement onto the orthogonal

complement, V0. This is called its essentialization.

3. Main Results

One of the key insights of this article is that we can construct paradoxical profiles by considering matrices

that have all row and column sums equal. This is because such a matrix can be shifted and scaled to

obtain a doubly stochastic matrix (all entries nonnegative and all row and column sums equal to 1). This

then enables us to appeal to the Birkhoff–von Neumann theorem [3, 15], which states that every doubly

stochastic matrix P is a convex combination of permutation matrices, P =
∑n!
`=1 λ`R` with λ1, . . . , λ` ≥ 0

and λ1 + · · ·+ λ` = 1.

The following result, which is known but included for the sake of completeness, distills these observations

into a convenient form which will be crucial for subsequent arguments.

Proposition 3.1. Let P be any collection of (n− 1)2 + 1 linearly independent n× n permutation matrices,

and let Mn be the vector space of n× n matrices over Q with all row and columns sums equal. Then every

matrix in Mn can be written as a linear combination of matrices in P.

Proof. Suppose S is an n×n matrix with all row and column sums equal to t. If S = t
nJ , then S is a linear

combination of permutation matrices because J is; see below. Otherwise, let m = min(i,j)∈[n]2 S(i, j). Then

P = (t − mn)−1(S − mJ) is doubly stochastic, so the Birkhoff–von Neumann theorem shows that P can

be written as a convex combination of permutation matrices, P =
∑n!
`=1 λ`R`. Similarly, 1

nJ =
∑n!
`=1 κ`R`

as it too is doubly stochastic. It follows that S = (t −mn)P + mJ is a linear combination of permutation
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matrices. Since every linear combination of permutation matrices has all row and column sums equal, M is

precisely the linear span of the permutation matrices.

To see that the dimension of Mn is (n− 1)2 + 1, define Bi,j to be the n× n matrix with 1’s in positions

(i, j) and (n, n), −1’s in positions (i, n) and (n, j), and 0’s elsewhere for each (i, j) ∈ [n−1]2. If Z = [zi,j ]
n
i,j=1

is any matrix with all row and column sums equal to 0, then it is easy to see that Z =
∑n−1
i=1

∑n−1
j=1 zi,jBi,j .

Now let S be any matrix with all row and column sums equal to t. Then S− tI has all row and column sums

zero; hence S can be expressed as a linear combination of the Bi,j ’s and I. As these (n − 1)2 + 1 matrices

are clearly linearly independent, the assertion follows. �

Remark 3.2. Proposition 3.1 can also be proved without invoking the Birkhoff–von Neumann theorem by

showing that the collection of permutation matrices

B =
{
R(i,j,n) : i, j ∈ [n− 1] are distinct

}
∪
{
R(i,n) : i ∈ [n− 1]

}
∪ {I}

is a basis forMn. (The subscripts represent permutations in cycle notation and Rσ is as previously defined.)

Linear independence follows by looking at the final rows and columns of the matrices, and Mn = span(B)

follows from the dimension argument in the proof of Proposition 3.1 upon observing that Bi,j = I −R(i,n)−
R(j,n) +R(j,i,n) for distinct i, j < n and Bk,k = I −R(k,n) for k < n.

The following theorem was proved in [6] using facts about the representation theory of Sn. Our proof

is based on the same general reasoning—essentially, that one can write Twp = Qpw—but uses only linear

algebra. In words, one can fix in advance a number of different positional voting procedures, along with

desired election outcomes for each procedure, and then find (infinitely many) profiles such that each procedure

yields the corresponding outcome!

Theorem 3.3. ([6, Theorem 1]) Given any linearly independent weighting vectors w1, . . . ,wn−1 ∈ W and

any results vectors r1, . . . , rn−1 ∈ V0, there are infinitely many profiles p ∈ Qn! with Twk
p = rk for k =

1, . . . , n− 1.

Proof. The general strategy will be to construct a matrix Q such that Qwk = rk for k = 1, . . . , n − 1 and

show that this matrix has right and left eigenvectors 1 and 1T; hence its row and column sums are constant.

Proposition 3.1 then gives Q =
∑
` p`R`, and thus Twk

p = Qwk = rk.

To begin, define r0 = w0 = 1 and set

F =
[
w0 w1 · · · wn−1

]
, R =

[
r0 r1 · · · rn−1

]
, and Q = RF−1.

(F is invertible because w1, . . . ,wn−1 are linearly independent and all orthogonal to w0.) Then Qwk = rk

for k = 0, . . . , n− 1 since[
Qw0 Qw1 · · · Qwn−1

]
= QF = R =

[
r0 r1 · · · rn−1

]
.

The condition Qw0 = r0 implies that the rows of Q sum to 1. To see that the columns sum to 1, we first

observe that

wT
0R =

[
〈w0, r0〉 〈w0, r1〉 · · · 〈w0, rn−1〉

]
= [n 0 · · · 0 ]

since w0 = r0 = 1 is orthogonal to each of r1, . . . , rn−1 by assumption. As such,

wT
0Q = wT

0RF
−1 = [n 0 · · · 0 ]F−1 = nf

where f is the first row of F−1. Since F−1F = I, we must have
〈
fT,w0

〉
= 1 and

〈
fT,wk

〉
= 0 for

k = 1, . . . , n − 1. The latter condition implies that f = C1T for some C, so the former implies that
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1 =
〈
fT,w0

〉
= C 〈1,1〉 = nC. Therefore,

wT
0Q = nf = wT

0 ,

so the columns of Q sum to 1 as well.

Since Q has all rows and columns summing to 1, it follows from Proposition 3.1 that it is a linear

combination of permutation matrices. In other words, there exists p ∈ Qn! such that Q =
∑n!
`=1 p`R`.

Accordingly, Twk
p = Qwk = rk for k = 1, . . . , n− 1. In fact there are infinitely many such p since there are

n! permutation matrices and the space of doubly stochastic matrices is (n2 − 2n+ 2)-dimensional. �

The preceding proof works just as well if one takes the weighting vectors to lie in W , the closure of W .

This allows for voting schemes in which the same point value can be assigned to multiple candidates, as

in the ‘vote for your favorite k’ system given by w = [n− k · · · n− k −k · · · −k ]T. One may impose

additional constraints such as all weighting vectors having the same positions tied by restricting to some

lower-dimensional face G ⊂ W , but then the linear independence condition dictates that there are only

d = dim(G) weighting/results vectors. To treat this case, take w1, . . . ,wd to be linearly independent vectors

in G and r1, . . . , rd to be the desired results vectors in V0. Then choose wd+1, . . . ,wn−1 to be any vectors

in W for which w1, . . . ,wn−1 are linearly independent and let rd+1, . . . , rn−1 be any results vectors in V0.

Also, observe that Q = RF−1 is explicit and may be easily realized as a linear combination of doubly

stochastic matrices. (The entries of Q may be negative, so one must add an appropriate multiple of the all

ones matrix and rescale to obtain a doubly stochastic matrix P as in the proof of Proposition 3.1.) As there

are algorithms for finding a Birkhoff–von Neumann decomposition of any doubly stochastic matrix [7], our

method actually provides a construction of the paradoxical profile.

Example 3.4. Suppose that

w1 =


3

1

−1

−3

 ,w2 =


1

1

1

−3

 ,w3 =


17

1

−7

−11

 , r1 =


−2

−11

4

9

 , r2 =


4

5

3

−12

 , r3 =


13

−2

−6

−5

 .
Then

Q =


1 −2 4 13

1 −11 5 −2

1 4 3 −6

1 9 −12 −5




1 3 1 17

1 1 1 1

1 −1 1 −7

1 −3 −3 −11


−1

=
1

8


27 −64 51 −6

49 −146 113 −8

−17 50 −21 −4

−51 168 −135 26


and

P =
(
1 + 4 · 1468

)−1(
Q+ 146

8 J
)

=
1

592


173 82 197 140

195 0 259 138

129 196 125 142

95 314 11 172


is doubly stochastic.

Using built-in functionality in the computer algebra system SageMath [13], a Birkhoff–von Neumann

decomposition of P is given by

P = 71
296R(1,4,2,3) + 31

592R(1,4,3,2) + 43
148R(2,3,1,4) + 11

592R(2,3,4,1) + 3
148R(2,4,3,1)

+ 3
148R(3,4,1,2) + 117

592R(3,4,2,1) + 41
296R(4,1,3,2) + 13

592R(4,3,1,2).
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Here the subscripts represent permutations in one-line notation.

Since Q = 74P − 73
4 J and J = R(1,2,3,4) +R(2,1,4,3) +R(3,4,1,2) +R(4,3,2,1), we see that

Q = − 73
4 R(1,2,3,4) + 71

4 R(1,4,2,3) + 31
8 R(1,4,3,2) − 73

4 R(2,1,4,3) + 43
2 R(2,3,1,4)

+ 11
8 R(2,3,4,1) + 3

2R(2,4,3,1) − 67
4 R(3,4,1,2) + 117

8 R(3,4,2,1) + 41
4 R(4,1,3,2)

+ 13
8 R(4,3,1,2) − 73

4 R(4,3,2,1).

Thus one profile for which the weight wk produces the result rk consists of − 73
4 votes for 1 above 2 above 3

above 4, 71
4 votes for 1 above 4 above 2 above 3, and so forth.

In typical settings, we are concerned with ordinal rather than cardinal rankings, and Theorem 3.3 can

then be used to generate significantly many more outcomes. To facilitate the ensuing argument, we record

the following simple lemma.

Lemma 3.5. For any w ∈W , x ∈ V0, there is some rational number η0 > 0 such that ηw + x ∈W for all

η ≥ η0.

Proof. Let m = min1≤k≤n−1(wk −wk+1) and M = max1≤k≤n |xk|, and set η = 3M/m. Then the successive

entries of ηw differ by at least 3M , so adding x does not change their relative order. �

Also, recall that a conical combination of vectors is a linear combination in which all coefficients are

nonnegative, and observe that W is closed under nontrivial conical combinations: if w1,w2, . . . ,wk ∈ W ,

then c1w1 + c2w2 + · · ·+ ckwk ∈ W whenever c1, . . . , ck ≥ 0 with ci 6= 0 for at least one i. A set with this

property is called a convex cone.

Our next theorem implies the result from [11] that there exist profiles from which
(
n−1
n

)
n! different ordinal

rankings can be obtained by judicious choices of weighting vectors in W .

Theorem 3.6. There exist infinitely many profiles p ∈ Qn! such that for every π ∈ Sn satisfying π(n) 6= 1,

there is some w(π) ∈W with Tw(π)p ∈ Cπ.

Proof. To begin, let w1, . . . ,wn−1 be any linearly independent vectors in W . By Lemma 3.5, we may scale

w1 so that w1 − n
(
n+1
2

)
wk ∈W for k = 2, . . . , n− 1. (This will be important later.) Set fk = ek − ek+1 for

k = 1, . . . , n− 1 where e1, . . . , en are the standard basis vectors in Qn, and let p be such that Twk
p = fk for

each k. There are infinitely many such p by Theorem 3.3.

Fix π ∈ Sn with π(n) 6= 1. The result will follow if we can find α1, . . . , αn−1 so that

w = w(π) =

n−1∑
k=1

αkwk

belongs to W and

s = s(π) = Twp = Qpw =

n−1∑
k=1

αkfk

belongs to Cπ.

Now for 1 ≤ i < j ≤ n, define fij = ei − ej =
∑j−1
k=i fk and wij =

∑j−1
k=i wk. The latter are contained

in W since it is a convex cone. For any collection of numbers {βij}i<j , if we define αk =
∑k
i=1

∑n
j=k+1 βij ,

then we have ∑
i<j

βijfij =
∑
i<j

βij

j−1∑
k=i

fk =

n−1∑
k=1

αkfk
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and ∑
i<j

βijwij =

n−1∑
k=1

αkwk.

Accordingly, it suffices to construct w =
∑
i<j βijwij ∈W with s = Qpw =

∑
i<j βijfij ∈ Cπ. Note that

each wij is in W , so w will be as well whenever the βij ’s are nonnegative (and not all 0).

First consider the case in which π(n) = n. Then we can take βkn = n − π−1(k) for k = 1, . . . , n − 1

and βij = 0 for j 6= n. As all βij are nonnegative, w =
∑
i<j βijwij ∈ W . To see that s ∈ Cπ, we

observe that sk = n− π−1(k) for k = 1, . . . , n− 1 and sn = −
∑n
k=1 sk. This gives the kth place candidate

sπ(k) = n− π−1(π(k)) = n− k > 0 points for k = 1, . . . , n− 1 and gives −
(
n
2

)
< 0 points to candidate n.

If π(n) = b with 1 < b < n, let π̃ be the permutation formed from π by moving n to last place (so

π̃(i) = π(i) for i < π−1(n), π̃(i) = π(i+ 1) for π−1(n) ≤ i < n, and π̃(n) = n), and let w̃ = w(π̃), s̃ = s(π̃)

be constructed as above. Now set w = w̃ − γbnwbn where

γbn =

(
n

2

)
+ n− π−1(n) +

1

2
.

Then s = Qpw = s̃− γbnfbn, and we will be done upon establishing that s ∈ Cπ and w ∈W .

We first note that s̃ ∈ Cπ̃, and s differs from s̃ by adding γbn in position n and subtracting γbn in position

b. As a result, candidate n now has n−π−1(n) + 1
2 points, candidate b has a negative number of points, and

all other candidates have the same point values as in s̃. It follows that s ∈ Cπ.

Now we turn our attention to w, showing that it can be written as a linear combination of vectors in W

with nonnegative coefficients. Recall that w1 is scaled so that w1 − n
(
n+1
2

)
wk ∈ W for k = 2, . . . , n − 1.

Also, since 1 < b < n, we have

(n− b)γbn = (n− b)
[(
n+ 1

2

)
− π−1(n) +

1

2

]
< n

(
n+ 1

2

)
.

Thus for each 1 < k < n, w1 − (n − b)γbnwk ∈ W since it is obtained by adding a positive multiple of wk

to w1 − n
(
n+1
2

)
wk. This shows that

w1 − γbnwbn = w1 − γbn
n−1∑
k=b

wk =
1

n− b

n−1∑
k=b

(
w1 − (n− b)γbnwk

)
∈W.

To complete the proof, note that w̃ =
∑n−1
k=1

(
n− π̃−1(k)

)
wk and n− π̃−1(k) ≥ 1 for all k < n, so

w = w̃ − γbnwbn = (n− π̃−1(1)− 1)w1 +

n−1∑
k=2

(
n− π̃−1(k)

)
wk +

(
w1 − γbnwbn

)
is a conical combination of vectors in W and so belongs to W . �

Remark 3.7. The π(n) = n part of the above argument can be interpreted as saying that if we have n − 1

‘serious candidates,’ then by introducing ‘dummy candidate’ n, who is assured to lose, there are profiles that

achieve any relative ordering of the serious candidates by choosing appropriate weighting vectors.

Note that one can always left-multiply Qp by a permutation matrix to relabel the candidates, so there is

nothing special about n.

It is often more convenient to work with Qp than Tw, so we take a moment to observe that if one only

cares about the ordinal rankings of candidates, then it can always be assumed that each profile consists of

nonnegative integers or that the matrix Qp is doubly stochastic.
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Proposition 3.8. Using the notation from above,

(1) For any p ∈ Qn!, there exists p̂ ∈ Nn!0 with Qp̂w lying in the same face as Qpw for all w ∈W .

(2) For any p ∈ Qn!, there exists p̃ ∈ Qn! such that p̃` ≥ 0 for all `,
∑n!
`=1 p̃` = 1, and Qp̃w lies in the

same face as Qpw for all w ∈W .

Proof. For the first claim, set x = min` p`, let d be the least common denominator of p1, . . . , pn!, and define

p̂ = d(p− x1) ∈ Nn!0 . If Qpw = Twp = r, then

Qp̂w = Twd(p− x1) = dTwp− dxTw1 = dr

since Tw1 = 0. Thus Qp̂w is a positive multiple of Qpw and so lies in the same face.

For the second claim, set m = mini,j Qp(i, j), c =
(∑n!

`=1 p` −mn
)−1

> 0, and Q̃p = c(Qp −mJ) where

J is the all ones matrix. (Here we are assuming that Qp does not have all entries equal. If it does, one can

just take Q̃p = 1
nJ .) Then Q̃p is nonnegative with rows and columns summing to 1, so the Birkhoff–von

Neumann theorem guarantees the existence of a nonnegative p̃ ∈ Qn! with entries summing to 1 that satisfies

Qp̃ = Q̃p. The claim follows since

Q̃pw = c(Qp −mJ)w = cQpw −mcJw = cQpw

lies in the same face as Qpw. �

The first part of Proposition 3.8 is only helpful inasmuch as one might object to having negative or

fractional votes cast. The second part is useful from a more mathematical perspective: Since W is a convex

cone, its image under Qp is the same as its image under the doubly stochastic matrix Qp̃. Thus we can

study possible ordinal outcomes of positional voting procedures by looking at the image of W (or its closure

W ) under multiplication by doubly stochastic matrices. An example of the utility of this observation is

that, by Proposition 3.1, any set of (n− 1)2 + 1 linearly independent permutation matrices can give rise to

all paradoxical profiles for positional voting procedures. In other words, one needs only this many distinct

preferences among the electorate. In fact, the construction from Proposition 3.8 shows that one may take

the doubly stochastic matrix to have at least one entry equal to zero (or all entries equal), and a result from

[4] then implies that a Birkhoff–von Neumann decomposition of size at most (n − 1)2 exists. This is the

content of Theorem 4 in [11].

The final result of this section uses the doubly stochastic matrix perspective to show that a profile can

give rise to at most n−1
n n! strict societal rankings; Theorem 3.6 shows that this is sharp. The result was first

proved in [11] by analyzing certain simplicial constructs geometrically. Our strategy is to show that the set

of possible societal rankings for any profile lies in a closed half-space whose boundary contains the origin,

and then argue that the complement of this half-space properly contains at least (n− 1)! of the n! chambers

Cπ (corresponding to impossible rankings).

Theorem 3.9. ([11, Theorem 3a]) For any p ∈ Qn!, there are at most n! − (n − 1)! permutations π ∈ Sn
such that Twp ∈ Cπ for some w ∈W .

Proof. Given any profile p ∈ Qn!, there is a doubly stochastic matrix Qp̃ such that the possible strict societal

rankings arising from p are precisely those π ∈ Sn for which Cπ ∩ Qp̃W 6= ∅. Equivalently, since doubly

stochastic matrices map sum-zero vectors to sum-zero vectors, writing T : V0 → V0 for the linear map defined

by T (v) = Qp̃v and denoting C̃π = Cπ ∩ V0, π is a possible ranking for p if and only if C̃π ∩ T
(
W
)
6= ∅.
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Now T
(
W
)

is the linear image of a convex set and thus is convex. Also, T
(
W
)

is a proper subset of V0

because if T is not bijective then T
(
W
)
⊆ T (V0) ⊂ V0, and if T is bijective then

T
(
W
)
∩ −T

(
W
)

= T
(
W
)
∩ T

(
−W

)
⊆ T (W ∩ −W ) = {0}.

This means that there is some v ∈ V0 \ T
(
W
)
, hence εv ∈ V0 \ T

(
W
)

for every ε > 0, so 0 ∈ ∂ T
(
W
)
.

Accordingly, the supporting hyperplane theorem shows that there is a hyperplane H through the origin in

V0 with T
(
W
)

contained entirely in the associated closed positive half-space [10]. In particular, there is a

nonzero h ∈ V0 such that π is a possible ranking for p only if there is an r ∈ C̃π such that 〈h, r〉 ≥ 0.

We will establish the result by showing that this constraint precludes (n−1)! rankings from being possible

outcomes associated with p. To this end, observe that 〈h, r〉 < 0 for all r ∈ C̃π if and only if 〈πh,w〉 < 0 for

all w ∈W where πh = [hπ−1(1) · · · hπ−1(n) ]T, so it suffices to show that there are at least (n− 1)! ways to

permute the entries of h so that it has negative inner product with every vector in W .

Now if v,w ∈ V0, then

(2)
〈v,w〉 =

n∑
k=1

vkwk = v1(w1 − w2) + (v1 + v2)(w2 − w3)

+ (v1 + v2 + v3)(w3 − w4) + · · ·+ (v1 + · · ·+ vn−1)(wn−1 − wn),

as there is cancellation among successive terms and −wn(v1 + · · · + vn−1) = wnvn. If w ∈ W , then

wk − wk+1 > 0 for each k = 1, . . . , n − 1, so (2) shows that 〈v,w〉 < 0 whenever the partial sums satisfy∑m
k=1 vk ≤ 0 for m = 1, . . . , n−1. (At least one of these inequalities would have to be strict for v ∈ V0\{0}.)
Combining these observations, we conclude that there are at least (n− 1)! impossible rankings as long as

there are (n− 1)! ways to permute the entries of h so that the partial sums are all nonpositive. To see that

this is so, let π′ ∈ Sn−1 and define π ∈ Sn by π(k) = π′(k) for k < n and π(n) = n. Define πm ∈ Sn by

πm(k) = π(k+m) for k = 1, . . . , n and m = 0, 1, . . . , n− 1, where the addition in the argument is performed

modulo n. The assertion will follow if we can show that at least one of these cyclic shifts of π has the

property that sk(m) :=
∑k
j=1 hπm(j) ≤ 0 for k = 1, . . . , n− 1.

For this, choose m so that sm(0) =
∑m
j=1 hπ(j) is maximal. We claim that sk(m) ≤ 0 for all 1 ≤ k < n.

Indeed, for 1 ≤ k ≤ n−m,

sk(m) =

m+k∑
j=m+1

hπ(j) ≤ 0

by maximality of sm(0). Also, h ∈ V0 implies that
∑n
j=m+1 hπ(j) = −sm(0), so for n −m < ` ≤ n − 1, we

have

s`(m) =

n∑
j=m+1

hπ(j) +

`+m+1−n∑
i=1

hπ(i) ≤
n∑

j=m+1

hπ(j) + sm(0) = 0.

This completes the claim and the proof. �

Remark 3.10. Demonstrating that at least (n − 1)! chambers lie on the opposite side of H from T
(
W
)

was a bit involved because we sought to keep the discussion self-contained. However, if one brings the full

power of the theory of hyperplane arrangements to bear on the problem (which is one of the advantages of

introducing this perspective), then much more efficient arguments are possible. For instance, Corollary 14.2

and equation (6.9) in [1] give the number of chambers in a generic half-space of the braid arrangement—

that is, a half-space defined by a hyperplane through the origin that does not contain any one-dimensional

faces—as (n− 1)!. Since H can be perturbed so as to be generic and this can only decrease the number of

chambers properly contained on either side, the desired inequality follows immediately.
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4. Choosing Weighting Vectors

In this final section, we characterize the possible results vectors arising from a given profile p as the

conical hull of a set of vectors constructed from the columns of Qp. The construction is surprisingly simple

and provides a straightforward procedure to reverse engineer an election by selecting desirable weights for a

given profile.

We begin by providing a convenient description of the space of (nonstrict) weighting vectors W . Define

v1, . . . ,vn−1 ∈ Qn by vk = k
n1−

∑n
j=n−k+1 ej , so that

v1 =
[

1
n · · ·

1
n −

n−1
n

]T
v2 =

[
2
n · · ·

2
n −

n−2
n −n−2n

]T
...

vn−2 =
[
n−2
n

n−2
n − 2

n · · · −
2
n

]T
vn−1 =

[
n−1
n − 1

n · · · −
1
n

]T
.

Proposition 4.1. Let v1, . . . ,vn−1 be as above. Then

W =
{
c1v1 + · · ·+ cn−1vn−1 : c1, . . . , cn−1 ≥ 0

}
.

Proof. Clearly vk ∈ W for k = 1, . . . , n − 1, and thus so is any conical combination thereof. Conversely,

given any w ∈W , we have

w =

n−1∑
k=1

akvk,

where

ak = wn−k − wn−k+1 ≥ 0.

Indeed, the ith coordinate of
∑n−1
k=1 akvk is

1

n

n−i∑
j=1

jaj −
1

n

n−1∑
j=n−i+1

aj(n− j)

=
1

n

n−1∑
j=1

j(wn−j − wn−j+1)−
n−1∑

j=n−i+1

(wn−j − wn−j+1)

=
1

n

(
(n− 1)w1 −

n∑
k=2

wk

)
−

i−1∑
k=1

(wk − wk+1)

=
1

n

(
nw1 −

n∑
k=1

wk

)
− (w1 − wi) = w1 − (w1 − wi) = wi. �

Now for any profile p ∈ Qn!, there is an n× n matrix Qp with all row and column sums equal to N such

that the possible ordinal outcomes are those whose associated faces intersect QpW . As the vectors in W are

precisely the conical combinations of v1, . . . ,vn−1, QpW consists of the conical combinations of s1, . . . , sn−1

where sk = Qpvk. Writing Qp =
[
q1 · · · qn

]
, we see that

sk = Qp

(k
n
1−

n∑
j=n−k+1

ej

)
=
k

n
Qp1−

n∑
j=n−k+1

Qpej =
kN

n
1−

n∑
j=n−k+1

qj .
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Since adding multiples of 1 will not change the face a vector lies in, it suffices to consider conical combinations

of

tk = sn−k +
Nk

n
1 = N1−

n∑
j=k+1

qj =

k∑
j=1

qj , k = 1, . . . , n− 1.

Also, scaling by a positive constant has no effect on which face a vector lies in, so the preceding observations

can be stated as follows.

Theorem 4.2. Let p ∈ Qn! be any profile and let Qp =
∑n!
`=1 p`R` be given in column form by Qp =[

q1 · · · qn
]
. Define tk =

∑k
j=1 qj. Then the possible outcomes for a positional voting procedure with input

p are those whose corresponding faces intersect the convex hull of t1, . . . , tn−1.

This suggests a way for a nefarious election official to obtain the most desirable possible outcome for

themselves: Given the preferences of the electorate, construct the matrix Qp and take tk to be the sum of

its first k columns for k = 1, . . . , n− 1. Then choose the most preferable outcome whose face intersects the

convex hull of t1, . . . , tn−1, pick a point r in this intersection, and decompose it as r =
∑n−1
k=1 bktk. The

favored outcome is assured by declaring the weighting vector to be w =
∑n−1
k=1 bkvn−k.

In practice, this could be accomplished by repeatedly generating a random probability vector b =

[ b1 · · · bn−1 ]T and recording the ranking corresponding to the face containing s = Tb, T =
[
t1 · · · tn−1

]
.

(This is just a matter of keeping track of the indices when s is sorted in descending order.) After a sufficiently

large number of iterations, one should have a nearly exhaustive list of possible ordinal rankings to choose

from and can construct the desired weighting vector from the vector b corresponding to the favorite.

Example 4.3. To illustrate this process, return to the profile given in Example 2.1. We have

Qp =


5 7 8 18

16 0 15 7

0 31 7 0

17 0 8 13

 .
In Example 2.1, we saw that using the Borda count, which corresponds to weighting vector [1.5, 0.5,−0.5,−1.5]T,

the resulting societal ranking was (3, 2, 4, 1), but using plurality, which corresponds to weighting vector

[0.75,−0.25,−0.25,−0.25]T, the resulting societal ranking was (4, 2, 1, 3). Suppose instead we want candi-

date 2 to win the election. We add the first k columns of Qp for k = 1, 2, 3 to get

t1 =


5

16

0

17

 , t2 =


12

16

31

17

 , t3 =


20

31

38

25

 .
Testing a few probability vectors reveals that b1 = 0.6, b2 = 0.2, and b3 = 0.2 yields

r = b1t1 + b2t2 + b3t3 =


9.4

19

13.8

18.6

 .
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Thus, we can achieve societal ranking (2, 4, 3, 1) using the weighting vector

w = b1v3 + b2v2 + b3v1 = 0.6


0.75

−0.25

−0.25

−0.25

+ 0.2


0.5

0.5

−0.5

−0.5

+ 0.2


0.25

0.25

0.25

−0.75

 =


0.6

0

−0.2

−0.4

 .
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